Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Iran J Immunol ; 19(3): 311-320, 2022 09.
Article in English | MEDLINE | ID: covidwho-2056778

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an emergent viral disease in which the host inflammatory response modulates the clinical outcome. Severe outcomes are associated with an exacerbation of inflammation in which chemokines play an important role as the attractants of immune cells to the tissues. OBJECTIVE: To evaluate the relationship of the chemokines IL-8, RANTES, MIG, MCP-1, and IP-10 with COVID-19 severity and outcomes in Mexican patients. METHODS: We analyzed the serum levels of IL-8, RANTES, MIG, MCP-1 and IP-10 in 148 COVID-19 hospitalized patients classified as mild (n=20), severe (n=61), and critical (n=67), as well as in healthy individuals (n=10), by flow cytometry bead array assay. RESULTS: Chemokine levels were higher in patients than in the healthy individuals, but only MIG, MCP-1, and IP-10 increased according to the disease severity, showing the highest levels in the critical group. MIG, MCP-1, and IP-10 levels were also higher in COVID-19 patients with comorbidities such as renal disease, type 2 diabetes, and hypertension. Moreover, elevated MIG levels seem to be related to organic failure/shock, and an increased risk of death. CONCLUSIONS: Our results suggest that the increased levels of MCP-1, IP-10, and especially MIG might be useful in predicting severe COVID-19 outcomes and could be promising therapeutic targets.


Subject(s)
COVID-19 , Chemokine CXCL9 , COVID-19/mortality , Chemokine CCL5 , Chemokine CXCL10 , Chemokine CXCL9/metabolism , Humans , Interleukin-8 , Mexico
2.
Sci Rep ; 12(1): 14956, 2022 Sep 02.
Article in English | MEDLINE | ID: covidwho-2008309

ABSTRACT

The severity of coronavirus disease 2019 (COVID-19) quickly progresses with unfavorable outcomes due to the host immune response and metabolism alteration. Hence, we hypothesized that leukocyte glucose index (LGI) is a biomarker for severe COVID-19. This study involved 109 patients and the usefulness of LGI was evaluated and compared with other risk factors to predict COVID 19 severity. LGI was identified as an independent risk factor (odds ratio [OR] = 1.727, 95% confidence interval [CI]: 1.026-3.048, P = 0.041), with an area under the curve (AUC) of 0.749 (95% CI: 0.642-0.857, P < 0.0001). Interestingly, LGI was a potential risk factor (OR = 2.694, 95% CI: 1.575-5.283, Pcorrected < 0.05) for severe COVID-19 in female but not in male patients. In addition, LGI proved to be a strong predictor of the severity in patients with diabetes (AUC = 0.915 (95% CI: 0.830-1), sensitivity = 0.833, and specificity = 0.931). The AUC of LGI, together with the respiratory rate (LGI + RR), showed a considerable improvement (AUC = 0.894, 95% CI: 0.835-0.954) compared to the other biochemical and respiratory parameters analyzed. Together, these findings indicate that LGI could potentially be used as a biomarker of severity in COVID-19 patients.


Subject(s)
COVID-19 , Biomarkers , COVID-19/diagnosis , Female , Glucose , Glycemic Index , Humans , Leukocytes , Male
3.
Trop Med Infect Dis ; 7(2)2022 Jan 30.
Article in English | MEDLINE | ID: covidwho-1667327

ABSTRACT

COVID-19 and dengue disease are challenging to tell apart because they have similarities in clinical and laboratory features during the acute phase of infection, leading to misdiagnosis and delayed treatment. The present study evaluated peripheral blood cell count accuracy to distinguish COVID-19 non-critical patients from non-severe dengue cases between the second and eleventh day after symptom onset. A total of 288 patients infected with SARS-CoV-2 (n = 105) or dengue virus (n = 183) were included in this study. Neutrophil, platelet, and lymphocyte counts were used to calculate the neutrophil-lymphocyte ratio (NLR), the platelet-lymphocyte ratio (PLR), and the neutrophil-lymphocyte*platelet ratio (NLPR). The logistic regression and ROC curves analysis revealed that neutrophil and platelet counts, NLR, LPR, and NLPR were higher in COVID-19 than dengue. The multivariate predictive model showed that the neutrophils, platelets, and NLPR were independently associated with COVID-19 with a good fit predictive value (p = 0.1041). The neutrophil (AUC = 0.95, 95% CI = 0.84-0.91), platelet (AUC = 0.89, 95% CI = 0.85-0.93) counts, and NLR (AUC = 0.88, 95% CI = 0.84-0.91) were able to discriminate COVID-19 from dengue with high sensitivity and specificity values (above 80%). Finally, based on predicted probabilities on combining neutrophils and platelets with NLR or NLPR, the adjusted AUC was 0.97 (95% CI = 0.94-0.98) to differentiate COVID-19 from dengue during the acute phase of infection with outstanding accuracy. These findings might suggest that the neutrophil, platelet counts, and NLR or NLPR provide a quick and cost-effective way to distinguish between dengue and COVID-19 in the context of co-epidemics in low-income tropical regions.

4.
Front Immunol ; 12: 796855, 2021.
Article in English | MEDLINE | ID: covidwho-1607033

ABSTRACT

Since its appearance, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2), the causal agent of Coronavirus Disease 2019 (COVID-19), represents a global problem for human health that involves the host lipid homeostasis. Regarding, lipid rafts are functional membrane microdomains with highly and tightly packed lipid molecules. These regions enriched in sphingolipids and cholesterol recruit and concentrate several receptors and molecules involved in pathogen recognition and cellular signaling. Cholesterol-rich lipid rafts have multiple functions for viral replication; however, their role in SARS-CoV-2 infection remains unclear. In this review, we discussed the novel evidence on the cholesterol-rich lipid rafts as a platform for SARS-CoV-2 entry, where receptors such as the angiotensin-converting enzyme-2 (ACE-2), heparan sulfate proteoglycans (HSPGs), human Toll-like receptors (TLRs), transmembrane serine proteases (TMPRSS), CD-147 and HDL-scavenger receptor B type 1 (SR-B1) are recruited for their interaction with the viral spike protein. FDA-approved drugs such as statins, metformin, hydroxychloroquine, and cyclodextrins (methyl-ß-cyclodextrin) can disrupt cholesterol-rich lipid rafts to regulate key molecules in the immune signaling pathways triggered by SARS-CoV-2 infection. Taken together, better knowledge on cholesterol-rich lipid rafts in the SARS-CoV-2-host interactions will provide valuable insights into pathogenesis and the identification of novel therapeutic targets.


Subject(s)
COVID-19/metabolism , Cholesterol/metabolism , Membrane Microdomains/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/prevention & control , COVID-19/virology , Humans , Hydroxychloroquine/pharmacology , Protein Binding/drug effects , SARS-CoV-2/physiology , Virus Internalization/drug effects , beta-Cyclodextrins/pharmacology
5.
Iran J Immunol ; 18(4): 331-337, 2021 12.
Article in English | MEDLINE | ID: covidwho-1594484

ABSTRACT

BACKGROUND: According to the World Health Organization, Mexico presents one of the highest mortality rates due to coronavirus disease 2019 (COVID-19). The "cytokine storm" phenomenon has been proposed as a pathological hallmark of severe COVID-19. OBJECTIVE: To determine the association of serum cytokine levels with COVID-19 severity. METHODS: We studied the cytokines IL-2, IL-4, IL-6, IL-10, TNF-α, and the IFN-γ serum levels through flow cytometry in 56 COVID-19 patients (24 critical and 32 non-critical) from Northwest Mexico. RESULTS: We observed a significant increase in the IL-6 and the IL-10 levels in the sera of critical patients. These cytokines were also associated with mechanical ventilation necessity and death, IL-6 showing AUC values above 0.7 for both variables; and correlated with Na+, creatinine, and platelet levels. On the other hand, no association was found between IL-2, IL-4, TNF-α, and IFN-γ with tested variables. CONCLUSION: Our results corroborate previous observations regarding IL-6 and IL-10 involvement in the severity of COVID-19.


Subject(s)
COVID-19/blood , COVID-19/physiopathology , Interleukin-10/metabolism , Interleukin-6/metabolism , COVID-19/pathology , Cytokine Release Syndrome/blood , Cytokine Release Syndrome/pathology , Female , Humans , Interleukin-10/blood , Interleukin-6/blood , Male , Mexico , Patient Acuity
6.
Am J Trop Med Hyg ; 105(2): 363-367, 2021 Jun 28.
Article in English | MEDLINE | ID: covidwho-1374605

ABSTRACT

The risk of coronavirus disease 2019 (COVID-19) and dengue coinfection is increased in tropical countries; however, the extrapulmonary clinical manifestations have not been fully characterized. We report a 42-year-old woman whose clinical manifestations began with fever, diarrhea, headache, chest pain, myalgia, odynophagia, and arthralgia. Despite mild respiratory symptoms and normal chest computed tomography scan results, she was diagnosed with real-time reverse-transcription polymerase chain reaction (RT-PCR)-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Because she had erythema and petechiae with a decreased platelet count, the dengue NS1 antigen and anti-dengue IgM/IgG test were performed, and the Centers for Disease Control and Prevention RT-PCR assay detected the dengue virus serotype 1 infection. Additionally, increased liver enzyme serum levels were found in the patient, who later developed hepatomegaly. Hence, the mechanism of hepatic pathology associated with SARS-CoV-2 and dengue coinfection needs further research.


Subject(s)
COVID-19/complications , Coinfection/complications , Coinfection/diagnosis , Dengue/complications , Dengue/diagnosis , Adult , COVID-19/diagnosis , Coinfection/virology , Female , Fever , Hematology/methods , Humans , Lost to Follow-Up , SARS-CoV-2/classification , SARS-CoV-2/genetics , Serogroup , Thorax/diagnostic imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL